organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-[1-(3-Chlorophenyl)ethylidene]-2-(2,4-dinitrophenyl)hydrazine

Hoong-Kun Fun,^a* \$ Suchada Chantrapromma,^b \$ Boonlerd Nilwanna^b and Chatchanok Karalai^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, and ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Received 2 February 2012; accepted 7 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.183; data-to-parameter ratio = 20.7.

There are two crystallographically independent molecules in the asymmetric unit of the title compound, $C_{14}H_{11}ClN_4O_4$, with the same E conformation about the C—N double bond. The molecules are approximately planar, with a dihedral angle between the benzene rings of $10.24 (12)^{\circ}$ in one molecule and $4.73 (12)^{\circ}$ in the other. In both molecules, the *ortho*-nitro groups of the 2,4-dinitrophenyl units are coplanar to their bound benzene rings, whereas the para-nitro groups are slightly twisted. In each molecule, intramolecular N-H···O hydrogen bonds generate S(6) ring motifs. In the crystal, molecules are linked by weak C-H···O interactions into sheets parallel to the $(\overline{102})$ plane. These sheets are stacked by π - π interactions, with centroid-centroid distances of 3.7008 (14) and 3.7459 (14) Å. A Cl···O short contact [3.111 (2) Å] is observed.

Related literature

For bond-length data, see: Allen et al. (1987). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2011); Fun et al. (2011, 2012); Nilwanna et al. (2011). For background to biological activities of hydrazones, see: Angelusiu et al. (2010); Cui et al. (2010); Gokce et al. (2009); Khan et al. (2007): Loncle et al. (2004); Wang et al. (2009).

V = 2941.8 (5) Å³

Mo $K\alpha$ radiation

 $0.42 \times 0.19 \times 0.18 \ \text{mm}$

32600 measured reflections

8629 independent reflections

4617 reflections with $I > 2\sigma(I)$

 $\mu = 0.29 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.034$

Z = 8

Experimental

Crystal data

C14H11ClN4O4 $M_r = 334.72$ Monoclinic, $P2_1/c$ a = 13.4825 (13) Åb = 15.1586 (15) Åc = 16.1281 (12) Å $\beta = 116.815 \ (6)^{\circ}$

Data collection

Bruker APEX DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\rm min}=0.889,\;T_{\rm max}=0.951$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	1 restraint
$wR(F^2) = 0.183$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
8629 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
417 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1A - H1NA \cdots O1A$	0.82	1.95	2.598 (2)	135
$N1B - H1NB \cdots O1B$	0.86	1.86	2.589 (2)	141
$C5A - H5A \cdots O1A^{i}$	0.93	2.52	3.251 (3)	136
$C5B-H5B\cdots O1B^{ii}$	0.93	2.33	3.196 (3)	154
$C11A - H11A \cdot \cdot \cdot O3B^{iii}$	0.93	2.55	3.402 (3)	153
$C11B - H11B \cdots O3A^{iv}$	0.93	2.58	3.429 (3)	153
Symmetry codes: (i)	$-x+2, y-\frac{1}{2}$	$, -z + \frac{3}{2};$ (ii) $-x + 1, y + \frac{1}{2}$	$, -z + \frac{3}{2};$ (iii)

 $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + 2, y + \frac{1}{2}, -z + \frac{5}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors also thank the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2707).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Angelusiu, M.-V., Barbuceanu, S.-F., Draghici, C. & Almajan, G.-L. (2010). *Eur. J. Med. Chem.* 45, 2055–2062.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chantrapromma, S., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Fun, H.-K. (2011). Acta Cryst. E67, 03499–03500.
- Cui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576–5584.

- Fun, H.-K., Nilwanna, B., Chantrapromma, S. & Razak, I. A. (2012). Acta Cryst. E68, 0398–0399.
- Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203.
- Gokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760-3764.
- Khan, S. A., Saleem, K. & Khan, Z. (2007). Eur. J. Med. Chem. 42, 103-108.
- Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). *Eur. J. Med. Chem.* 39, 1067–1071.
- Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, 03084–03085.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, Q., Yang, Z. Y., Qi, G.-F. & Qin, D.-D. (2009). Eur. J. Med. Chem. 44, 2425–2433.

supplementary materials

Acta Cryst. (2012). E68, o704–o705 [doi:10.1107/S160053681200548X]

(E)-1-[1-(3-Chlorophenyl)ethylidene]-2-(2,4-dinitrophenyl)hydrazine

Hoong-Kun Fun, Suchada Chantrapromma, Boonlerd Nilwanna and Chatchanok Karalai

Comment

Hydrazones are known to be bioactive compounds with antibacterial, antifungal, antitumor, anti-inflammatory as well as antioxidant (Angelusiu *et al.*, 2010; Cui *et al.*, 2010; Gokce *et al.*, 2009; Khan *et al.*, 2007; Loncle *et al.*, 2004; Wang *et al.*, 2009) activities. Within our on-going research on the bioactivity of hydrazones, the title compound (I) was synthesized in order to study and compare its biological activity with other related compounds (Chantrapromma *et al.*, 2011; Fun *et al.*, 2011; 2012; Nilwanna *et al.*, 2011). Herein we report the synthesis and crystal structure of (I).

There are two crystallographic independent molecules *A* and *B* in the asymmetric unit of (I) with differences in bond angles (Fig. 1). The molecular structure of (I) is nearly planar with the dihedral angle between the two benzene rings of 10.24 (12)° in molecule *A* and 4.73 (12)° in molecule *B*. The central ethylidenehydrazine bridge (N1/N2/C7/C14) is planar with the torsion angles N1–N2–C7–C14 = 0.8 (3) and 0.5 (3)° in molecules *A* and *B*, repectively. The mean plane through this central bridge makes dihedral angles of 6.36 (17) and 3.90 (18)° with the 2,4-dinitrophenyl and 3-chlorophenyl rings, respectively in molecule *A* whereas the corresponding values are 5.37 (15) and 0.90 (15)° in molecule *B*. In both molecules, the *ortho*-nitro group of the 2,4-dinitrophenyl is coplanar with the attached benzene ring with the *r.m.s.* deviation of 0.0164 (2) Å for the nine non H-atoms (C1–C6/N3/O1/O2), and torsion angles O1–N3–C2–C3 = 176.84 (18)° and O2–N3–C2–C3 = -1.9 (3)°, whereas the *para*-nitro group is slightly twisted with the torsion angles O3–N4–C4–C5 = 168.8 (2)° and O4–N4–C4–C5 = -11.5 (3)° in molecule *B*. In each molecular N—H···O hydrogen bond (Fig.1 and Table 1) generates S(6) ring motifs (Bernstein *et al.*, 1995) The bond distances agree with the literature values (Allen *et al.*, 1987) and are comparable with the related structures (Chantrapromma *et al.*, 2011; Fun *et al.*, 2011; 2012; Nilwanna *et al.*, 2011).

In the crystal packing (Fig. 2), the molecules are linked by weak C—H···O interactions (Table 1) into sheets parallel to the (-102) plane. These sheets are further stacked along the *a* axis by π - π interactions with distances of Cg₁···Cg₂^v = 3.7459 (14) Å and Cg₁···Cg₃^{vi} = 3.7008 (14) Å [symmetry codes (v) = x, 3/2-y, 1/2+z; (vi) = 2-x, 2-y, 2-z]; Cg₁, Cg₂ and Cg₃ are the centroids of C1A–C6A, C8A–C13A and C8B–C13B benzene rings, respectively. A Cl1B···O1Bⁱⁱ [3.111 (2) Å] short contact is observed.

Experimental

The title compound (I) was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml) and H_2SO_4 (conc.) (98 %, 0.50 ml) was slowly added with stirring. 3-Chloroacetophenone (0.26 ml, 2 mmol) was then added to the solution with continuous stirring. The solution was stirred for 1 h yielding an orange solid, which was filtered off and washed with methanol. Orange block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days. M.p. 478-479 K.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(N-H) = 0.83 and 0.86 Å, d(C-H) = 0.93 Å for aromatic and 0.96 Å for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. A DFIX restraint of 2.00 (1) Å was used for the H14D···H1NB distance. An outlier (0 2 0) was omitted.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids. Intramolecular N—H…O hydrogen bonds are shown as dashed lines.

The crystal packing of (I) viewed approximately along the b axis. Hydrogen bonds are shown as dashed lines.

(E)-1-[1-(3-Chlorophenyl)ethylidene]-2-(2,4-dinitrophenyl)hydrazine

Crystal data

C₁₄H₁₁ClN₄O₄ $M_r = 334.72$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 13.4825 (13) Å b = 15.1586 (15) Å c = 16.1281 (12) Å $\beta = 116.815 (6)^{\circ}$ $V = 2941.8 (5) \text{ Å}^{3}$ Z = 8

Data collection

Bruker APEX DUO CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.889, T_{\max} = 0.951$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.183$ S = 1.01 F(000) = 1376 $D_x = 1.512 \text{ Mg m}^{-3}$ Melting point = 478–479 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8629 reflections $\theta = 1.7-30.1^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 296 KBlock, orange $0.42 \times 0.19 \times 0.18 \text{ mm}$

32600 measured reflections 8629 independent reflections 4617 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 30.1^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -18 \rightarrow 18$ $k = -21 \rightarrow 19$ $l = -22 \rightarrow 22$

8629 reflections417 parameters1 restraintPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0916P)^2 + 0.289P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1A	0.83654 (6)	0.45629 (4)	0.39055 (4)	0.0766 (2)
O1A	0.99997 (15)	0.97920 (10)	0.69823 (12)	0.0774 (5)
O2A	1.06555 (14)	0.99861 (10)	0.84524 (12)	0.0711 (5)
O3A	1.2204 (2)	0.76410 (15)	1.05861 (12)	0.1103 (8)
O4A	1.18161 (18)	0.63048 (13)	1.01190 (12)	0.0949 (6)
N1A	0.97877 (14)	0.82236 (11)	0.62719 (11)	0.0553 (4)
H1NA	0.9589	0.8744	0.6200	0.066*
N2A	0.94483 (14)	0.76046 (11)	0.55856 (11)	0.0536 (4)
N3A	1.03978 (14)	0.95052 (11)	0.77797 (13)	0.0545 (4)
N4A	1.18006 (17)	0.70917 (15)	0.99701 (13)	0.0688 (5)
C1A	1.02714 (15)	0.79618 (12)	0.71746 (13)	0.0457 (4)
C2A	1.05891 (15)	0.85647 (12)	0.79264 (13)	0.0449 (4)
C3A	1.10886 (15)	0.82829 (13)	0.88368 (13)	0.0481 (4)
H3A	1.1298	0.8685	0.9322	0.058*
C4A	1.12712 (16)	0.73977 (13)	0.90130 (13)	0.0502 (5)
C5A	1.09807 (17)	0.67883 (13)	0.82982 (14)	0.0556 (5)
H5A	1.1124	0.6192	0.8435	0.067*
C6A	1.04898 (18)	0.70614 (12)	0.74032 (14)	0.0533 (5)
H6A	1.0293	0.6647	0.6930	0.064*
C7A	0.90349 (17)	0.78840 (14)	0.47443 (14)	0.0534 (5)
C8A	0.86585 (16)	0.71840 (15)	0.40185 (13)	0.0514 (5)
C9A	0.87083 (16)	0.63003 (14)	0.42698 (13)	0.0525 (5)
H9A	0.8993	0.6143	0.4893	0.063*
C10A	0.83347 (17)	0.56618 (15)	0.35924 (14)	0.0558 (5)
C11A	0.79092 (17)	0.58681 (18)	0.26572 (14)	0.0636 (6)
H11A	0.7651	0.5428	0.2208	0.076*
C12A	0.78777 (18)	0.67358 (19)	0.24109 (15)	0.0678 (6)
H12A	0.7610	0.6885	0.1787	0.081*
C13A	0.82399 (18)	0.73955 (17)	0.30792 (14)	0.0614 (6)
H13A	0.8203	0.7982	0.2900	0.074*
C14A	0.8916 (3)	0.88420 (17)	0.44724 (17)	0.0849 (8)
H14A	0.9563	0.9159	0.4895	0.127*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H14B	0.8270	0.9082	0.4495	0.127*
H14C	0.8839	0.8896	0.3853	0.127*
Cl1B	0.60994 (6)	1.29099 (4)	1.10126 (4)	0.0783 (2)
O1B	0.58475 (15)	0.77573 (10)	0.80697 (11)	0.0683 (4)
O2B	0.51645 (18)	0.75501 (10)	0.66003 (13)	0.0860 (6)
O3B	0.35381 (19)	0.98474 (14)	0.44260 (11)	0.1013 (7)
O4B	0.3250 (2)	1.11127 (14)	0.48825 (13)	0.1090 (8)
N1B	0.58812 (13)	0.93100 (11)	0.87512 (11)	0.0490 (4)
H1NB	0.6001	0.8750	0.8796	0.059*
N2B	0.60588 (13)	0.99163 (11)	0.94310 (10)	0.0474 (4)
N3B	0.53830 (15)	0.80306 (11)	0.72640 (13)	0.0556 (4)
N4B	0.36352 (19)	1.03694 (14)	0.50342 (13)	0.0729 (6)
C1B	0.53726 (15)	0.95592 (12)	0.78481 (12)	0.0432 (4)
C2B	0.51113 (15)	0.89601 (11)	0.71062 (13)	0.0445 (4)
C3B	0.45551 (17)	0.92247 (13)	0.61880 (13)	0.0507 (5)
H3B	0.4394	0.8822	0.5709	0.061*
C4B	0.42477 (17)	1.00861 (13)	0.59995 (13)	0.0517 (5)
C5B	0.45036 (18)	1.07026 (13)	0.67045 (14)	0.0564 (5)
H5B	0.4293	1.1289	0.6559	0.068*
C6B	0.50633 (18)	1.04464 (12)	0.76078 (14)	0.0513 (5)
H6B	0.5245	1.0865	0.8076	0.062*
C7B	0.64883 (16)	0.96382 (13)	1.02719 (13)	0.0479 (4)
C8B	0.66519 (15)	1.03272 (14)	1.09812 (13)	0.0475 (4)
C9B	0.63316 (16)	1.11936 (14)	1.07065 (13)	0.0505 (5)
H9B	0.6015	1.1343	1.0080	0.061*
C10B	0.64837 (16)	1.18318 (15)	1.13627 (14)	0.0539 (5)
C11B	0.69611 (17)	1.16370 (17)	1.22983 (14)	0.0589 (5)
H11B	0.7068	1.2075	1.2734	0.071*
C12B	0.72749 (19)	1.07829 (18)	1.25720 (14)	0.0631 (6)
H12B	0.7595	1.0640	1.3200	0.076*
C13B	0.71201 (17)	1.01338 (15)	1.19250 (14)	0.0572 (5)
H13B	0.7332	0.9557	1.2123	0.069*
C14B	0.6820 (2)	0.86989 (15)	1.05689 (15)	0.0722 (7)
H14D	0.6413	0.8311	1.0056	0.108*
H14E	0.6656	0.8557	1.1074	0.108*
H14F	0.7602	0.8629	1.0766	0.108*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1A	0.0978 (5)	0.0648 (4)	0.0690 (4)	-0.0055 (3)	0.0391 (3)	-0.0079 (3)
O1A	0.1049 (13)	0.0437 (8)	0.0721 (11)	0.0150 (8)	0.0298 (10)	0.0122 (8)
O2A	0.0885 (12)	0.0463 (8)	0.0820 (11)	0.0005 (8)	0.0417 (10)	-0.0156 (8)
O3A	0.159 (2)	0.0944 (15)	0.0468 (10)	-0.0004 (14)	0.0199 (11)	0.0000 (10)
O4A	0.1274 (16)	0.0722 (12)	0.0691 (11)	0.0088 (11)	0.0301 (11)	0.0272 (9)
N1A	0.0674 (11)	0.0427 (9)	0.0489 (9)	0.0047 (8)	0.0200 (8)	0.0013 (7)
N2A	0.0591 (10)	0.0508 (9)	0.0439 (9)	0.0023 (8)	0.0170 (8)	0.0003 (7)
N3A	0.0582 (10)	0.0393 (8)	0.0657 (11)	0.0026 (7)	0.0278 (9)	-0.0008 (8)
N4A	0.0792 (13)	0.0687 (13)	0.0522 (11)	0.0052 (10)	0.0240 (10)	0.0111 (10)
C1A	0.0472 (10)	0.0407 (9)	0.0468 (10)	0.0006 (8)	0.0192 (8)	0.0013 (8)

C2A	0.0481 (10)	0.0346 (9)	0.0529 (10)	0.0007 (7)	0.0236 (8)	-0.0007 (8)
C3A	0.0483 (10)	0.0478 (10)	0.0485 (10)	-0.0041 (8)	0.0223 (8)	-0.0054 (8)
C4A	0.0537 (11)	0.0496 (11)	0.0446 (10)	-0.0004 (9)	0.0199 (9)	0.0039 (8)
C5A	0.0666 (13)	0.0363 (9)	0.0582 (12)	0.0001 (9)	0.0233 (10)	0.0042 (8)
C6A	0.0657 (12)	0.0369 (9)	0.0504 (11)	-0.0002 (8)	0.0199 (9)	-0.0035 (8)
C7A	0.0497 (11)	0.0563 (12)	0.0512 (11)	0.0054 (9)	0.0200 (9)	0.0077 (9)
C8A	0.0441 (10)	0.0649 (13)	0.0442 (10)	0.0063 (9)	0.0192 (8)	0.0061 (9)
C9A	0.0506 (11)	0.0646 (13)	0.0408 (10)	0.0008 (9)	0.0193 (8)	0.0008 (9)
C10A	0.0503 (11)	0.0668 (13)	0.0505 (11)	0.0014 (10)	0.0231 (9)	-0.0014 (10)
C11A	0.0521 (12)	0.0900 (18)	0.0467 (11)	-0.0003 (11)	0.0205 (10)	-0.0109 (11)
C12A	0.0616 (13)	0.0988 (19)	0.0394 (11)	0.0085 (13)	0.0194 (10)	0.0060 (11)
C13A	0.0604 (12)	0.0751 (15)	0.0459 (11)	0.0089 (11)	0.0214 (9)	0.0124 (10)
C14A	0.122 (2)	0.0617 (15)	0.0613 (15)	0.0093 (15)	0.0331 (15)	0.0130 (12)
Cl1B	0.1019 (5)	0.0664 (4)	0.0699 (4)	0.0174 (3)	0.0415 (4)	-0.0006(3)
O1B	0.0926 (12)	0.0426 (8)	0.0695 (10)	0.0050 (7)	0.0364 (9)	0.0099 (7)
O2B	0.1302 (16)	0.0440 (8)	0.0760 (11)	0.0024 (9)	0.0396 (11)	-0.0144 (8)
O3B	0.159 (2)	0.0877 (14)	0.0431 (9)	0.0147 (13)	0.0329 (11)	0.0020 (9)
O4B	0.162 (2)	0.0778 (13)	0.0645 (11)	0.0374 (14)	0.0311 (12)	0.0214 (10)
N1B	0.0603 (10)	0.0419 (8)	0.0455 (8)	-0.0016 (7)	0.0246 (7)	-0.0001 (7)
N2B	0.0531 (9)	0.0474 (9)	0.0445 (8)	-0.0053 (7)	0.0245 (7)	-0.0007 (7)
N3B	0.0685 (11)	0.0395 (9)	0.0606 (11)	-0.0029 (8)	0.0307 (9)	-0.0032 (8)
N4B	0.0972 (15)	0.0665 (13)	0.0486 (11)	0.0051 (11)	0.0273 (10)	0.0099 (10)
C1B	0.0486 (10)	0.0414 (9)	0.0452 (10)	-0.0051 (7)	0.0260 (8)	0.0002 (7)
C2B	0.0517 (10)	0.0348 (9)	0.0504 (10)	-0.0048 (7)	0.0261 (9)	-0.0017 (7)
C3B	0.0636 (12)	0.0452 (10)	0.0470 (10)	-0.0059 (9)	0.0284 (9)	-0.0049 (8)
C4B	0.0663 (13)	0.0476 (11)	0.0425 (10)	-0.0020 (9)	0.0257 (9)	0.0028 (8)
C5B	0.0775 (14)	0.0387 (10)	0.0562 (12)	0.0016 (9)	0.0331 (11)	0.0065 (9)
C6B	0.0708 (13)	0.0386 (9)	0.0481 (10)	-0.0031 (9)	0.0301 (10)	-0.0033 (8)
C7B	0.0459 (10)	0.0526 (11)	0.0448 (10)	-0.0042 (8)	0.0202 (8)	0.0046 (8)
C8B	0.0440 (10)	0.0578 (12)	0.0419 (10)	-0.0066 (8)	0.0204 (8)	0.0019 (8)
C9B	0.0500(11)	0.0621 (12)	0.0392 (9)	-0.0009 (9)	0.0200 (8)	0.0025 (9)
C10B	0.0508 (11)	0.0626 (13)	0.0513 (11)	-0.0009 (9)	0.0258 (9)	-0.0022 (9)
C11B	0.0598 (12)	0.0763 (15)	0.0458 (11)	-0.0061 (11)	0.0284 (10)	-0.0090 (10)
C12B	0.0655 (13)	0.0870 (17)	0.0378 (10)	-0.0071 (12)	0.0243 (9)	0.0029 (11)
C13B	0.0603 (12)	0.0664 (13)	0.0451 (10)	-0.0026 (10)	0.0240 (9)	0.0083 (10)
C14B	0.0949 (18)	0.0579 (14)	0.0520 (12)	0.0059 (12)	0.0228 (12)	0.0077 (10)

Geometric parameters (Å, °)

Cl1A—C10A	1.736 (2)	Cl1B—C10B	1.730 (2)	
O1A—N3A	1.228 (2)	O1B—N3B	1.232 (2)	
O2A—N3A	1.220 (2)	O2B—N3B	1.216 (2)	
O3A—N4A	1.220 (3)	O3B—N4B	1.221 (3)	
O4A—N4A	1.215 (3)	O4B—N4B	1.218 (3)	
N1A—C1A	1.359 (2)	N1B—C1B	1.354 (2)	
N1A—N2A	1.363 (2)	N1B—N2B	1.366 (2)	
N1A—H1NA	0.8247	N1B—H1NB	0.8610	
N2A—C7A	1.284 (2)	N2B—C7B	1.282 (2)	
N3A—C2A	1.449 (2)	N3B—C2B	1.449 (2)	
N4A—C4A	1.454 (3)	N4B—C4B	1.460 (3)	

G11 G()	1 110 (2)	CID C(D	1 110 (2)
CIA—C6A	1.410 (3)	CIB—C6B	1.410 (2)
C1A—C2A	1.421 (3)	C1B—C2B	1.414 (2)
C2A—C3A	1.378 (3)	C2B—C3B	1.384 (3)
C3A—C4A	1.371 (3)	C3B—C4B	1.362 (3)
СЗА—НЗА	0.9300	СЗВ—НЗВ	0.9300
C4A—C5A	1.389 (3)	C4B—C5B	1.390 (3)
C5A—C6A	1.353 (3)	C5B—C6B	1.361 (3)
C5A—H5A	0.9300	C5B—H5B	0.9300
С6А—Н6А	0.9300	С6В—Н6В	0.9300
C7A—C8A	1.489 (3)	C7B—C8B	1.490 (3)
C7A—C14A	1.505 (3)	C7B—C14B	1.504 (3)
C8A—C9A	1.392 (3)	C8B—C13B	1.391 (3)
C8A—C13A	1.395 (3)	C8B—C9B	1.391 (3)
C9A-C10A	1.374 (3)	C9B—C10B	1.379 (3)
С9А—Н9А	0.9300	С9В—Н9В	0.9300
C10A—C11A	1.386 (3)	C10B—C11B	1.379 (3)
C11A—C12A	1.369 (4)	C11B—C12B	1.372 (4)
C11A—H11A	0.9300	C11B—H11B	0.9300
C12A—C13A	1.388 (3)	C12B—C13B	1.380(3)
C12A—H12A	0.9300	C12B—H12B	0.9300
С13А—Н13А	0.9300	C13B—H13B	0.9300
C14A—H14A	0.9600	C14B—H14D	0.9600
C14A—H14B	0.9600	C14B—H14E	0.9600
C14A - H14C	0.9600	C14B—H14F	0.9600
			019 000
C1A = N1A = N2A	119 48 (16)	C1B—N1B—N2B	119 72 (16)
C1A—N1A—N2A C1A—N1A—H1NA	119.48 (16) 113 5	C1B—N1B—N2B C1B—N1B—H1NB	119.72 (16) 110 5
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA	119.48 (16) 113.5 125.2	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB	119.72 (16) 110.5 129.6
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A	119.48 (16) 113.5 125.2 117.24 (18)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B	119.72 (16) 110.5 129.6 117.36 (17)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A N3A O1A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B_N3B_O1B	119.72 (16) 110.5 129.6 117.36 (17) 122.21 (18)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B	119.72 (16) 110.5 129.6 117.36 (17) 122.21 (18) 119.09 (18)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118 74 (17)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B_N3B—C2B	119.72 (16) 110.5 129.6 117.36 (17) 122.21 (18) 119.09 (18) 118.69 (16)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118.74 (17) 123.2 (2)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B	119.72 (16) 110.5 129.6 117.36 (17) 122.21 (18) 119.09 (18) 118.69 (16)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118.74 (17) 123.2 (2) 118.6 (2)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B	119.72 (16) 110.5 129.6 117.36 (17) 122.21 (18) 119.09 (18) 118.69 (16) 123.8 (2)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118.74 (17) 123.2 (2) 118.6 (2) 118.6 (2)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—C4B	119.72 (16) 110.5 129.6 117.36 (17) 122.21 (18) 119.09 (18) 118.69 (16) 123.8 (2) 118.1 (2)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A O3A—N4A—C4A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118.74 (17) 123.2 (2) 118.6 (2) 118.2 (2) 120.28 (17)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—C2B O4B—N4B—C4B O3B—N4B—C4B	119.72 (16) 110.5 129.6 117.36 (17) 122.21 (18) 119.09 (18) 118.69 (16) 123.8 (2) 118.1 (2) 118.1 (2)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A O3A—N4A—C4A N1A—C1A—C6A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118.74 (17) 123.2 (2) 118.6 (2) 118.6 (2) 118.2 (2) 120.38 (17)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—C4B O3B—N4B—C4B N1B—C1B—C6B	119.72 (16) 110.5 129.6 117.36 (17) 122.21 (18) 119.09 (18) 118.69 (16) 123.8 (2) 118.1 (2) 118.1 (2) 120.37 (17)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A O3A—N4A—C4A N1A—C1A—C4A N1A—C1A—C2A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118.74 (17) 123.2 (2) 118.6 (2) 118.6 (2) 118.2 (2) 120.38 (17) 122.72 (17)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—O3B O4B—N4B—C4B N1B—C1B—C4B N1B—C1B—C2B	119.72 (16) 110.5 129.6 117.36 (17) 122.21 (18) 119.09 (18) 118.69 (16) 123.8 (2) 118.1 (2) 118.1 (2) 120.37 (17) 122.88 (16)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A O3A—N4A—C4A N1A—C1A—C4A N1A—C1A—C2A C6A—C1A—C2A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118.74 (17) 123.2 (2) 118.6 (2) 118.2 (2) 120.38 (17) 122.72 (17) 116.90 (17)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—C4B O3B—N4B—C4B N1B—C1B—C4B N1B—C1B—C6B N1B—C1B—C2B C6B—C1B—C2B	119.72 (16) 110.5 129.6 117.36 (17) 122.21 (18) 119.09 (18) 118.69 (16) 123.8 (2) 118.1 (2) 118.1 (2) 120.37 (17) 122.88 (16) 116.75 (17)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C2A C6A—C1A—C2A C3A—C2A—C1A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118.74 (17) 123.2 (2) 118.6 (2) 118.6 (2) 118.2 (2) 120.38 (17) 122.72 (17) 116.90 (17) 121.59 (17)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—C4B O3B—N4B—C4B N1B—C1B—C4B N1B—C1B—C6B N1B—C1B—C2B C6B—C1B—C2B C3B—C2B—C1B	119.72 (16) 110.5 129.6 117.36 (17) 122.21 (18) 119.09 (18) 118.69 (16) 123.8 (2) 118.1 (2) 118.1 (2) 120.37 (17) 122.88 (16) 116.75 (17) 121.82 (17)
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—C4A O3A—N4A—C4A O3A—N4A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C4A C6A—C1A—C2A C6A—C1A—C2A C3A—C2A—C1A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118.74 (17) 123.2 (2) 118.6 (2) 118.2 (2) 120.38 (17) 122.72 (17) 116.90 (17) 121.59 (17) 116.37 (17)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—C4B O3B—N4B—C4B N1B—C1B—C4B N1B—C1B—C6B N1B—C1B—C6B N1B—C1B—C2B C6B—C1B—C2B C3B—C2B—C1B C3B—C2B—N3B	119.72 (16) 110.5 129.6 $117.36 (17)$ $122.21 (18)$ $119.09 (18)$ $118.69 (16)$ $123.8 (2)$ $118.1 (2)$ $120.37 (17)$ $122.88 (16)$ $116.75 (17)$ $121.82 (17)$ $116.22 (17)$
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A O3A—N4A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C2A C6A—C1A—C2A C3A—C2A—C1A C3A—C2A—N3A C1A—C2A—N3A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118.74 (17) 123.2 (2) 118.6 (2) 118.6 (2) 118.2 (2) 120.38 (17) 122.72 (17) 116.90 (17) 121.59 (17) 116.37 (17) 122.03 (17)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—O3B O4B—N4B—C4B N1B—C1B—C4B N1B—C1B—C4B N1B—C1B—C2B C6B—C1B—C2B C3B—C2B—C1B C3B—C2B—N3B C1B—C2B—N3B	119.72 (16) 110.5 129.6 $117.36 (17)$ $122.21 (18)$ $119.09 (18)$ $118.69 (16)$ $123.8 (2)$ $118.1 (2)$ $120.37 (17)$ $122.88 (16)$ $116.75 (17)$ $121.82 (17)$ $121.94 (17)$
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A O3A—N4A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C2A C6A—C1A—C2A C3A—C2A—C1A C3A—C2A—N3A C1A—C2A—N3A C4A—C3A—C2A	119.48 (16) 113.5 125.2 117.24 (18) 122.28 (17) 118.97 (18) 118.74 (17) 123.2 (2) 118.6 (2) 118.2 (2) 120.38 (17) 122.72 (17) 116.90 (17) 121.59 (17) 116.37 (17) 122.03 (17) 118.68 (18)	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—C4B O3B—N4B—C4B N1B—C1B—C4B N1B—C1B—C2B C6B—C1B—C2B C6B—C1B—C2B C3B—C2B—N3B C1B—C2B—N3B C4B—C3B—C2B	119.72 (16) 110.5 129.6 $117.36 (17)$ $122.21 (18)$ $119.09 (18)$ $118.69 (16)$ $123.8 (2)$ $118.1 (2)$ $118.1 (2)$ $120.37 (17)$ $122.88 (16)$ $116.75 (17)$ $121.82 (17)$ $116.22 (17)$ $121.94 (17)$ $118.70 (18)$
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A O3A—N4A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C2A C6A—C1A—C2A C3A—C2A—C1A C3A—C2A—N3A C1A—C2A—N3A C4A—C3A—C2A C4A—C3A—H3A	119.48 (16) 113.5 125.2 $117.24 (18)$ $122.28 (17)$ $118.97 (18)$ $118.74 (17)$ $123.2 (2)$ $118.6 (2)$ $118.2 (2)$ $120.38 (17)$ $122.72 (17)$ $116.90 (17)$ $121.59 (17)$ $116.37 (17)$ $122.03 (17)$ $118.68 (18)$ 120.7	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—C4B O3B—N4B—C4B N1B—C1B—C4B N1B—C1B—C6B N1B—C1B—C2B C6B—C1B—C2B C6B—C1B—C2B C3B—C2B—N3B C1B—C2B—N3B C4B—C3B—C2B C4B—C3B—H3B	119.72 (16) 110.5 129.6 $117.36 (17)$ $122.21 (18)$ $119.09 (18)$ $118.69 (16)$ $123.8 (2)$ $118.1 (2)$ $118.1 (2)$ $120.37 (17)$ $122.88 (16)$ $116.75 (17)$ $121.82 (17)$ $116.22 (17)$ $116.22 (17)$ $121.94 (17)$ $118.70 (18)$ 120.6
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A O3A—N4A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C4A C6A—C1A—C2A C6A—C1A—C2A C3A—C2A—C1A C3A—C2A—N3A C1A—C2A—N3A C4A—C3A—C2A C4A—C3A—H3A C2A—C3A—H3A	119.48 (16) 113.5 125.2 $117.24 (18)$ $122.28 (17)$ $118.97 (18)$ $118.74 (17)$ $123.2 (2)$ $118.6 (2)$ $118.6 (2)$ $118.2 (2)$ $120.38 (17)$ $122.72 (17)$ $116.90 (17)$ $121.59 (17)$ $116.37 (17)$ $122.03 (17)$ $118.68 (18)$ 120.7 120.7	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—C4B O3B—N4B—C4B N1B—C1B—C4B N1B—C1B—C6B N1B—C1B—C2B C6B—C1B—C2B C6B—C1B—C2B C3B—C2B—N3B C1B—C2B—N3B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B	119.72 (16) 110.5 129.6 $117.36 (17)$ $122.21 (18)$ $119.09 (18)$ $118.69 (16)$ $123.8 (2)$ $118.1 (2)$ $118.1 (2)$ $120.37 (17)$ $122.88 (16)$ $116.75 (17)$ $121.82 (17)$ $116.22 (17)$ $121.94 (17)$ $118.70 (18)$ 120.6 120.6
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A O3A—N4A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C4A C6A—C1A—C2A C6A—C1A—C2A C3A—C2A—N3A C1A—C2A—N3A C1A—C2A—N3A C4A—C3A—C2A C4A—C3A—H3A C2A—C3A—H3A C3A—C4A—C5A	119.48 (16) 113.5 125.2 $117.24 (18)$ $122.28 (17)$ $118.97 (18)$ $118.74 (17)$ $123.2 (2)$ $118.6 (2)$ $118.6 (2)$ $118.2 (2)$ $120.38 (17)$ $122.72 (17)$ $116.90 (17)$ $121.59 (17)$ $116.37 (17)$ $122.03 (17)$ $118.68 (18)$ 120.7 120.7 $121.47 (18)$	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—O3B O4B—N4B—C4B N1B—C1B—C4B N1B—C1B—C4B N1B—C1B—C2B C6B—C1B—C2B C3B—C2B—N3B C1B—C2B—N3B C1B—C2B—N3B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B	119.72 (16) 110.5 129.6 $117.36 (17)$ $122.21 (18)$ $119.09 (18)$ $118.69 (16)$ $123.8 (2)$ $118.1 (2)$ $120.37 (17)$ $122.88 (16)$ $116.75 (17)$ $121.82 (17)$ $121.82 (17)$ $116.22 (17)$ $121.94 (17)$ $118.70 (18)$ 120.6 120.6 120.6 $121.59 (18)$
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—O3A O4A—N4A—C4A O3A—N4A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C2A C6A—C1A—C2A C3A—C2A—N3A C1A—C2A—N3A C4A—C3A—C2A C4A—C3A—H3A C3A—C4A—C5A C3A—C4A—N4A	119.48 (16) 113.5 125.2 $117.24 (18)$ $122.28 (17)$ $118.97 (18)$ $118.74 (17)$ $123.2 (2)$ $118.6 (2)$ $118.2 (2)$ $120.38 (17)$ $122.72 (17)$ $116.90 (17)$ $121.59 (17)$ $116.37 (17)$ $122.03 (17)$ $118.68 (18)$ 120.7 120.7 $121.47 (18)$ $119.25 (19)$	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—C4B N1B—C1B—C4B N1B—C1B—C4B N1B—C1B—C2B C6B—C1B—C2B C6B—C1B—C2B C3B—C2B—N3B C1B—C2B—N3B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—C5B C3B—C4B—N4B	119.72 (16) 110.5 129.6 $117.36 (17)$ $122.21 (18)$ $119.09 (18)$ $118.69 (16)$ $123.8 (2)$ $118.1 (2)$ $120.37 (17)$ $122.88 (16)$ $116.75 (17)$ $121.82 (17)$ $116.22 (17)$ $121.94 (17)$ $118.70 (18)$ 120.6 120.6 $121.59 (18)$ $119.28 (18)$
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—C4A O3A—N4A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C2A C6A—C1A—C2A C6A—C1A—C2A C3A—C2A—N3A C1A—C2A—N3A C4A—C3A—H3A C2A—C3A—H3A C3A—C4A—C5A C3A—C4A—N4A C5A—C4A—N4A	119.48 (16) 113.5 125.2 $117.24 (18)$ $122.28 (17)$ $118.97 (18)$ $118.74 (17)$ $123.2 (2)$ $118.6 (2)$ $118.2 (2)$ $120.38 (17)$ $122.72 (17)$ $116.90 (17)$ $121.59 (17)$ $116.37 (17)$ $122.03 (17)$ $118.68 (18)$ 120.7 120.7 120.7 $121.47 (18)$ $119.25 (19)$ $119.27 (19)$	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—C4B O3B—N4B—C4B O3B—N4B—C4B N1B—C1B—C2B C6B—C1B—C2B C6B—C1B—C2B C3B—C2B—N3B C1B—C2B—N3B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—N4B C5B—C4B—N4B	119.72 (16) 110.5 129.6 $117.36 (17)$ $122.21 (18)$ $119.09 (18)$ $118.69 (16)$ $123.8 (2)$ $118.1 (2)$ $118.1 (2)$ $120.37 (17)$ $122.88 (16)$ $116.75 (17)$ $121.82 (17)$ $116.22 (17)$ $121.94 (17)$ $118.70 (18)$ 120.6 120.6 120.6 120.6 $121.59 (18)$ $119.28 (18)$ $119.14 (19)$
C1A—N1A—N2A C1A—N1A—H1NA N2A—N1A—H1NA C7A—N2A—N1A O2A—N3A—O1A O2A—N3A—O1A O2A—N3A—C2A O1A—N3A—C2A O4A—N4A—C4A O3A—N4A—C4A O3A—N4A—C4A N1A—C1A—C4A N1A—C1A—C4A N1A—C1A—C2A C6A—C1A—C2A C6A—C1A—C2A C3A—C2A—N3A C1A—C2A—N3A C1A—C2A—N3A C4A—C3A—H3A C2A—C3A—H3A C3A—C4A—C5A C3A—C4A—N4A C5A—C4A—N4A C6A—C5A—C4A	119.48 (16) 113.5 125.2 $117.24 (18)$ $122.28 (17)$ $118.97 (18)$ $118.74 (17)$ $123.2 (2)$ $118.6 (2)$ $118.2 (2)$ $120.38 (17)$ $122.72 (17)$ $116.90 (17)$ $121.59 (17)$ $116.37 (17)$ $122.03 (17)$ $118.68 (18)$ 120.7 120.7 120.7 $121.47 (18)$ $119.25 (19)$ $119.27 (19)$ $120.08 (18)$	C1B—N1B—N2B C1B—N1B—H1NB N2B—N1B—H1NB C7B—N2B—N1B O2B—N3B—O1B O2B—N3B—C2B O1B—N3B—C2B O4B—N4B—O3B O4B—N4B—C4B O3B—N4B—C4B O3B—N4B—C4B N1B—C1B—C2B C6B—C1B—C2B C6B—C1B—C2B C3B—C2B—N3B C1B—C2B—N3B C4B—C3B—C2B C4B—C3B—H3B C2B—C3B—H3B C3B—C4B—N4B C5B—C4B—N4B C5B—C4B—N4B C6B—C5B—C4B	119.72 (16) 110.5 129.6 $117.36 (17)$ $122.21 (18)$ $119.09 (18)$ $118.69 (16)$ $123.8 (2)$ $118.1 (2)$ $118.1 (2)$ $120.37 (17)$ $122.88 (16)$ $116.75 (17)$ $121.82 (17)$ $116.22 (17)$ $121.94 (17)$ $118.70 (18)$ 120.6 120.6 120.6 120.6 $121.59 (18)$ $119.28 (18)$ $119.14 (19)$ $119.81 (19)$

С4А—С5А—Н5А	120.0	C4B—C5B—H5B	120.1
C5A—C6A—C1A	121.27 (18)	C5B—C6B—C1B	121.28 (18)
С5А—С6А—Н6А	119.4	C5B—C6B—H6B	119.4
С1А—С6А—Н6А	119.4	C1B—C6B—H6B	119.4
N2A—C7A—C8A	115.29 (19)	N2B—C7B—C8B	114.92 (18)
N2A—C7A—C14A	124.4 (2)	N2B—C7B—C14B	125.14 (19)
C8A—C7A—C14A	120.33 (19)	C8B—C7B—C14B	119.94 (17)
C9A—C8A—C13A	118.7 (2)	C13B—C8B—C9B	118.04 (19)
C9A—C8A—C7A	120.14 (17)	C13B—C8B—C7B	121.96 (19)
C13A—C8A—C7A	121.2 (2)	C9B—C8B—C7B	120.00 (17)
C10A—C9A—C8A	119.60 (19)	C10B—C9B—C8B	120.03 (18)
С10А—С9А—Н9А	120.2	C10B—C9B—H9B	120.0
С8А—С9А—Н9А	120.2	C8B—C9B—H9B	120.0
C9A—C10A—C11A	122.0 (2)	C11B—C10B—C9B	121.6 (2)
C9A—C10A—C11A	119.52 (16)	C11B—C10B—C11B	118.84 (18)
C11A—C10A—C11A	118.49 (18)	C9B—C10B—C11B	119.55 (16)
C12A—C11A—C10A	118.4 (2)	C12B—C11B—C10B	118.6 (2)
C12A—C11A—H11A	120.8	C12B—C11B—H11B	120.7
C10A—C11A—H11A	120.8	C10B—C11B—H11B	120.7
C11A—C12A—C13A	120.9 (2)	C11B—C12B—C13B	120.7 (2)
C11A—C12A—H12A	119.6	C11B—C12B—H12B	119.7
C13A—C12A—H12A	119.6	C13B—C12B—H12B	119.7
C12A—C13A—C8A	120.4 (2)	C12B—C13B—C8B	121.1 (2)
C12A—C13A—H13A	119.8	C12B—C13B—H13B	119.5
C8A—C13A—H13A	119.8	C8B—C13B—H13B	119.5
C7A—C14A—H14A	109.5	C7B—C14B—H14D	109.5
C7A—C14A—H14B	109.5	C7B—C14B—H14E	109.5
H14A—C14A—H14B	109.5	H14D—C14B—H14E	109.5
C7A—C14A—H14C	109.5	C7B—C14B—H14F	109.5
H14A—C14A—H14C	109.5	H14D—C14B—H14F	109.5
H14B—C14A—H14C	109.5	H14E—C14B—H14F	109.5
C1A—N1A—N2A—C7A	-177.38 (18)	C1B—N1B—N2B—C7B	176.29 (17)
N2A—N1A—C1A—C6A	4.3 (3)	N2B—N1B—C1B—C6B	2.4 (3)
N2A—N1A—C1A—C2A	-176.33 (18)	N2B—N1B—C1B—C2B	-176.75 (17)
N1A—C1A—C2A—C3A	-179.36 (18)	N1B—C1B—C2B—C3B	177.62 (18)
C6A—C1A—C2A—C3A	0.1 (3)	C6B—C1B—C2B—C3B	-1.5 (3)
N1A—C1A—C2A—N3A	1.2 (3)	N1B—C1B—C2B—N3B	-0.6 (3)
C6A—C1A—C2A—N3A	-179.35 (18)	C6B—C1B—C2B—N3B	-179.79 (17)
O2A—N3A—C2A—C3A	-1.9 (3)	O2B—N3B—C2B—C3B	3.6 (3)
O1A—N3A—C2A—C3A	176.84 (18)	O1B—N3B—C2B—C3B	-177.77 (18)
O2A—N3A—C2A—C1A	177.57 (18)	O2B—N3B—C2B—C1B	-178.10 (19)
O1A—N3A—C2A—C1A	-3.7 (3)	O1B—N3B—C2B—C1B	0.6 (3)
C1A—C2A—C3A—C4A	-0.5 (3)	C1B—C2B—C3B—C4B	-0.4 (3)
N3A—C2A—C3A—C4A	178.92 (17)	N3B—C2B—C3B—C4B	177.93 (18)
C2A—C3A—C4A—C5A	1.0 (3)	C2B—C3B—C4B—C5B	1.6 (3)
C2A—C3A—C4A—N4A	179.80 (18)	C2B—C3B—C4B—N4B	-178.42 (19)
O4A—N4A—C4A—C3A	169.6 (2)	O4B—N4B—C4B—C3B	171.1 (2)
O3A—N4A—C4A—C3A	-10.0 (3)	O3B—N4B—C4B—C3B	-8.9 (3)

O4A—N4A—C4A—C5A	-11.5(3)	O4B—N4B—C4B—C5B	-8.9(4)
O3A—N4A—C4A—C5A	168.8 (2)	O3B—N4B—C4B—C5B	171.1 (2)
C3A—C4A—C5A—C6A	-1.1 (3)	C3B—C4B—C5B—C6B	-0.8(3)
N4A—C4A—C5A—C6A	-179.8 (2)	N4B—C4B—C5B—C6B	179.3 (2)
C4A—C5A—C6A—C1A	0.6 (3)	C4B—C5B—C6B—C1B	-1.3 (3)
N1A—C1A—C6A—C5A	179.35 (19)	N1B—C1B—C6B—C5B	-176.77 (19)
C2A—C1A—C6A—C5A	-0.1 (3)	C2B—C1B—C6B—C5B	2.4 (3)
N1A—N2A—C7A—C8A	-179.01 (17)	N1B—N2B—C7B—C8B	-179.42 (15)
N1A—N2A—C7A—C14A	0.8 (3)	N1B—N2B—C7B—C14B	0.5 (3)
N2A—C7A—C8A—C9A	3.7 (3)	N2B-C7B-C8B-C13B	-179.25 (18)
C14A—C7A—C8A—C9A	-176.1 (2)	C14B—C7B—C8B—C13B	0.8 (3)
N2A—C7A—C8A—C13A	-177.09 (19)	N2B-C7B-C8B-C9B	0.8 (3)
C14A—C7A—C8A—C13A	3.1 (3)	C14B—C7B—C8B—C9B	-179.11 (19)
C13A—C8A—C9A—C10A	-0.8 (3)	C13B—C8B—C9B—C10B	0.1 (3)
C7A—C8A—C9A—C10A	178.49 (18)	C7B—C8B—C9B—C10B	-179.94 (18)
C8A—C9A—C10A—C11A	0.3 (3)	C8B—C9B—C10B—C11B	0.7 (3)
C8A—C9A—C10A—C11A	-178.40 (15)	C8B—C9B—C10B—C11B	179.10 (15)
C9A—C10A—C11A—C12A	0.8 (3)	C9B—C10B—C11B—C12B	-0.9 (3)
Cl1A—C10A—C11A—C12A	179.51 (17)	Cl1B—C10B—C11B—C12B	-179.32 (17)
C10A—C11A—C12A—C13A	-1.4 (3)	C10B—C11B—C12B—C13B	0.3 (3)
C11A—C12A—C13A—C8A	0.9 (3)	C11B—C12B—C13B—C8B	0.5 (3)
C9A—C8A—C13A—C12A	0.2 (3)	C9B—C8B—C13B—C12B	-0.7 (3)
C7A—C8A—C13A—C12A	-179.1 (2)	C7B—C8B—C13B—C12B	179.35 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1A—H1NA···O1A	0.82	1.95	2.598 (2)	135
N1 <i>B</i> —H1 <i>NB</i> ···O1 <i>B</i>	0.86	1.86	2.589 (2)	141
C5A—H5A···O1A ⁱ	0.93	2.52	3.251 (3)	136
C5 <i>B</i> —H5 <i>B</i> ···O1 <i>B</i> ⁱⁱ	0.93	2.33	3.196 (3)	154
C11 <i>A</i> —H11 <i>A</i> ···O3 <i>B</i> ⁱⁱⁱ	0.93	2.55	3.402 (3)	153
C11 B —H11 B ····O3 A^{iv}	0.93	2.58	3.429 (3)	153

Symmetry codes: (i) -x+2, y-1/2, -z+3/2; (ii) -x+1, y+1/2, -z+3/2; (iii) -x+1, y-1/2, -z+1/2; (iv) -x+2, y+1/2, -z+5/2.